
TDD by example
Evaluating an expression

MARCEL POPESCU

This publication is licensed under a Creative Commons Attribution 3.0

Unported License, available at

http://creativecommons.org/licenses/by/3.0/

You can contact the author at mdpopescu@renfieldsoftware.com

Cover image: Simon Howden / FreeDigitalPhotos.net

mailto:mdpopescu@renfieldsoftware.com

CONTENTS

Chapter 1. Rationale and preparation 7
1.1. Why TDD? 7
1.2. Preparation 11

Chapter 2. First acceptance tests 13
2.1. Unit tests 14
2.2. Addition 21
2.3. Subtraction 22
2.4. Refactoring 23
2.5. Parsing 25
2.6. Extracting a new class 28
2.7. Operators 30

Chapter 3. More operations 42
3.1. Refactoring 46
3.2. Division 48
3.3. Refactoring 50
3.4. Mocking 57
3.5. More dependencies 60

Chapter 4. Multiple operations 63
4.1. Smells-driven refactoring 65
4.2. Lists 68
4.3. Operator precedence 75

Chapter 5. More complex expressions 78
5.1. Negative numbers 78
5.2. Parentheses 82
5.3. Refactoring 88

Chapter 6. Floating-point numbers 89
6.1. Malformed expressions 96
6.2. Spaces 99

Chapter 7. Symbols 100
Chapter 8. Conclusion 104

7

Chapter 1. Rationale and preparation

1.1. Why TDD?

It is said that the best way to learn something is to teach

someone else; this is my attempt at teaching others test-driven

design (hereafter TDD) in order to deepen my own

understanding of it. In addition, I had often wished – at the

beginning of my journey into programming – to read a book

that would show how another programmer thinks and works

through his or her mistakes. Just like in science or

mathematics, where sometimes it is more interesting to find

out how the law or theorem was reached, so it is in

programming; yes, that is a nice program, with a clean design

– but how did it get that way?

Finding a subject was a problem for me; there are two opposite

forces, as it were – I need something simple enough that I can

focus on the TDD process instead of the actual problem to be

solved, but I also need something complex enough so that it

doesn‟t get dismissed as a toy. In this book, I have settled on

something that I found moderately difficult in the first years of

programming – evaluating a mathematical expression. It

would be great if you had tried solving this problem before –

this way you can compare the approaches; but even if you

didn‟t, I hope you can understand how the TDD process works

and, as importantly, why it‟s useful.

In fact – why is TDD useful? I‟ll start by answering something

else: why is automated testing useful? Donald Knuth famously

said “Beware of bugs in the above code; I have only proved it

Marcel Popescu

8

correct, not tried it.”1 We need to test the code, if only for

psychological reasons; the feeling of “I‟ve made something that

works” is a great motivator for all the programmers I know.

If we agree that testing is necessary, automated testing is

almost a given; we‟re programmers, we like automating stuff.

Testing is something that needs to be done frequently –

otherwise we risk fixing a bug in one place only to cause three

to pop up in other places. Since manually testing every bit of

code is difficult to do (and boring), we need a testing

framework to automate it.

Ok, testing is good; automated testing is better; why test

before writing the code, though? How does that help? It helps

because software is complex and well-designed software hard

to get. It is often not hard to write the code to solve an

immediate problem; writing the code that can solve that

problem but is also flexible enough to allow us to quickly

respond to changing requirements is more difficult. A good

design helps code be flexible; test-driven design attempts to

ensure that we have a good design at all times.

Why does TDD help to obtain a good design? In my

experience, it helps to think of it not as writing tests, but as

writing specifications; more importantly, as executable, non-

ambiguous specifications. The fact that you must write the

specifications before the code helps clarify your intent; the fact

that you must write code that can be tested helps to make it

less coupled. As you progress, the second part – having to

write testable code – grows in importance because it creates

1 http://www-cs-faculty.stanford.edu/~knuth/faq.html

http://www-cs-faculty.stanford.edu/~knuth/faq.html

TDD by example – Evaluating an expression

9

“pain points”: the parts of the code that are hard to test show

you a problem with the code, a violation of a design principle.

Here‟s an example; you are writing code for a blog and you

have a feature to implement: a method to show the posts older

than a month. Easy:

 private BlogDB db;

 public IEnumerable<Post> GetOldPosts()
 {
 return db
 .Posts
 .Where(post => post.DateTime < DateTime.Now.AddMonths(-1));
 }

How do you test this? Since your method reads directly from

the database, you will have to add several posts to it at the

beginning of the test and then delete them at the end, so that

you leave the database in the same state as it was before. The

test is slow but, more importantly, any bug in it will create

problems in the database – either leaving fictive posts in it or

deleting real ones.

It is not the case that such a test cannot be written; it is,

however, painful to run, which suggests that something needs

to be done. In this particular case, extracting the db.Posts

expression as a PostRepository interface that gets passed to

our class in the constructor is one possible solution. The tests

can now mock the interface and run completely in memory

without touching the database; this eliminates both problems

mentioned above and, in addition, creates a design that is less

coupled: the class no longer depends on (needs to know about)

the database directly, but instead depends on an abstraction.

Marcel Popescu

10

We have just re-discovered the Dependency Inversion

Principle, which states:

1. High-level modules should not depend on low-

level modules. Both should depend on abstractions.

2. Abstractions should not depend upon details.

Details should depend upon abstractions.

Let‟s continue; I have changed the code to look like this:

 private PostRepository posts;

 public IEnumerable<Post> GetOldPosts()
 {
 return posts
 .Get()
 .Where(post => post.DateTime < DateTime.Now.AddMonths(-1));
 }

There is still a dependency on a detail here, a concrete

implementation: it is the dependency on the DateTime static

class. This forces us to create fictive posts that depend on the

date/time when the test is run, which creates the potential of

non-reproducible failures (think about leap years for

example). I should extract this dependency as an interface:

 public interface Clock
 {
 DateTime GetCurrentTime();
 }

The method will change to:

 private Clock clock;

 public IEnumerable<Post> GetOldPosts()
 {
 return posts
 .Get()

TDD by example – Evaluating an expression

11

 .Where(post => post.DateTime <
clock.GetCurrentTime().AddMonths(-1));
 }

Now I can use hardcoded DateTime values in the test, making

it run deterministically.

Note that, besides making the class easier to test, the above

steps helped with something very important: it has exposed

the dependencies. This class needs a post repository of some

sort, as well as a clock; those dependencies were hidden

before. That is never a good thing.2

This is one example of how TDD helps to obtain a cleaner

design; I will discuss other “code smells” as they occur.

However, there is one important point to make: TDD is not a

panacea, a silver bullet. Some of the design changes will be

guided by the tests; some of them will be guided by design

principles; some by my experience. There‟s no one best design.

TDD is just another weapon in your arsenal as a programmer.

1.2. Preparation

I have used Visual Studio 2010 and the MSTest testing

framework to write this book; changing the code to use

another testing framework like NUnit or xUnit should not be

very difficult, as all the major concepts are the same. I also

recommend using the Resharper add-on to Visual Studio; it

makes life much easier.

This is a code-heavy book. Just reading it won‟t help you

much; you have to follow it by writing the code. In order to do

2 Miško Hevery has a great article on this at
http://misko.hevery.com/2009/02/19/constructor-injection-vs-setter-
injection/

http://misko.hevery.com/2009/02/19/constructor-injection-vs-setter-injection/
http://misko.hevery.com/2009/02/19/constructor-injection-vs-setter-injection/

Marcel Popescu

12

that, you will have to create two projects: a class library with

the actual evaluator (I‟ve called it Math.ExpressionEvaluator)

and a test project (which I‟ve called

Math.ExpressionEvaluator.Tests). You will also need the Moq

framework, but I‟ll show you how to get it when the time

comes.

TDD by example – Evaluating an expression

13

Chapter 2. First acceptance tests

When can the first version of the application be deployed? The

minimal feature set, as it were? This is, of course, subjective

and will vary wildly depending on the actual problem you‟re

trying to solve; however, I suggest that you spend a few

minutes thinking about the minimal version that can

nevertheless be useful to a potential customer. In my opinion,

it is better to err on the side of less instead of more features –

it‟s better to get something out fast, so that the real customers

can give you feedback.

For this particular problem – an expression evaluator – I am

the customer; I have decided that adding and subtracting two

integer numbers is good enough for a first version. Let‟s write

an acceptance test for that.

I begin by adding an AcceptanceTests class to the Tests

project:

 [TestClass]
 public class AcceptanceTests
 {
 }

followed by adding the first two tests:

 [TestMethod]
 public void CanAddTwoIntegerNumbers()
 {
 var sut = new Evaluator();

 var result = sut.Eval("10+25");

 Assert.AreEqual(35, result);
 }

 [TestMethod]
 public void CanSubtractTwoIntegerNumbers()
 {

Marcel Popescu

14

 var sut = new Evaluator();

 var result = sut.Eval("300-5");

 Assert.AreEqual(295, result);
 }

As you can see, I have decided to call the main class

Evaluator, and the method being called to evaluate the

expression Eval. Not the best names, I admit but, as the saying

goes, naming is one of the two hard problems in

programming3.

I am also using the variable sut to hold the new instance –

from system under test. It‟s just a convention I‟m using; feel

free to call it anything else.

2.1. Unit tests

Back to the acceptance tests; they will fail if I try to compile

the code, obviously, so I will use them as guidelines to create

my unit tests. I don‟t want to write production code that is not

first guarded by unit tests – or, to put it another way, I don‟t

want to write production code without first writing executable

specifications. Therefore, I create another class and call it

EvaluatorTests (by convention, I‟m going to call all unit tests

for class X XTests):

 [TestClass]
 public class EvaluatorTests
 {
 }

What is the simplest requirement I can come up with for this

problem? I can think of two: an empty (or null) string should

3 http://www.tbray.org/ongoing/When/200x/2005/12/23/UPI

http://www.tbray.org/ongoing/When/200x/2005/12/23/UPI

TDD by example – Evaluating an expression

15

throw an exception; a one-digit number should return its

value. The first one is simpler so I write it:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void NullOrEmptyStringThrowsException()
 {
 var sut = new Evaluator();

 sut.Eval("");
 }

This test is still not compiling, but now I can write the actual

code to fix that:

 public class Evaluator
 {
 public int Eval(string s)
 {
 return 0;
 }
 }

Everything compiles, including the acceptance tests, so I run

the tests (press the second toolbox button, Run All Tests in

Solution, or use the Ctrl-R, A shortcut). The two acceptance

tests are predictably failing; we‟re going to ignore them for

now. More importantly, the unit test fails with the message

“…did not throw expected exception System.Exception.”

Good. The test fails exactly as it should – the method being

called is supposed to do something and it doesn‟t. Easy to fix:

 public int Eval(string s)
 {
 throw new Exception();
 }

(Note: you will need to add using System; for this to compile.)

Marcel Popescu

16

I run the tests again and – I get my first green! The

specification worked and the system under test behaves as

specified. Yes, it is a trivial specification but bear with me,

we‟re going places.

Let me write the second unit test now: a one-digit number

should be evaluated to its integer value:

 [TestMethod]
 public void OneDigitNumberIsEvaluatedToItsIntegerValue()
 {
 var sut = new Evaluator();

 var result = sut.Eval("7");

 Assert.AreEqual(7, result);
 }

The test fails incorrectly – it doesn‟t return the wrong result, it

throws an exception. Returning 0 would fix that problem, but

it would break the previous unit test. That means I need to add

logic to the Eval method:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 return 0;
 }

Now the second test fails correctly: “Assert.AreEqual failed.

Expected:<7>. Actual:<0>.” This is important – if the test fails

for a different reason than expected it might not test what I

actually wanted, which means I‟m not as protected as I should

be.

I‟ve reached an important moment: one of the TDD principles

is “do the simplest thing that could possibly work”. The

TDD by example – Evaluating an expression

17

simplest thing, taken to extremes, is to simply return 7 from

the Eval method, and there is a school of thought that would

have us do exactly that. It is not as absurd as it sounds at first,

so I‟m going to show you what happens:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 return 7;
 }

The two unit tests pass now. I realize there‟s a problem and I

expose it through another test:

 [TestMethod]
 public void
OneDigitNumberIsEvaluatedToItsIntegerValue_SecondAttempt()
 {
 var sut = new Evaluator();

 var result = sut.Eval("5");

 Assert.AreEqual(5, result);
 }

The test fails correctly (“Assert.AreEqual failed. Expected:<5>.

Actual:<7>.”) so I need to fix the issue. What is the simplest

thing that could possibly work now? It‟s definitely not “return

5;” and testing for 5 or 7 is more complex than just converting

the string to a number:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 return Convert.ToInt32(s);
 }

Marcel Popescu

18

All our unit tests pass; as you can see, “do the simplest thing

that could possibly work” was not as big of a problem as I

initially feared. I can also see, by looking at the Eval method,

that I‟m actually supporting multiple-digit numbers too; I‟ll

write a test to confirm that:

 [TestMethod]
 public void MultipleDigitNumberIsEvaluatedToItsIntegerValue()
 {
 var sut = new Evaluator();

 var result = sut.Eval("324");

 Assert.AreEqual(324, result);
 }

Indeed, this passes, and having a test here ensures that I don‟t

change something that will break it.

Time for a short recap: I am going through very quick write

test – write code – make test pass cycles, also known as red-

green. This helps me in two ways: I get constant positive

feedback from seeing that my code is working (which is, in my

opinion, one of the greatest feelings in the world) and,

whenever I need to stop for some reason, I am confident that I

can get back “in the saddle” quickly, by re-reading the last

tests I wrote.

Note: I have observed one problem while writing this

book: the drawback of having a great “it works”

feeling is that it also provides a natural time-out point.

If you tend to procrastinate, the moment all tests pass

is great for checking mail, calling someone, reading

the news… anything but working. This does not

normally happen when you’re busy coding in the usual

way, in my experience, because feedback occurs less

TDD by example – Evaluating an expression

19

often; it takes more discipline to keep working when

doing TDD. A partner could probably help here, but

I’ve never tried pair programming myself.

There is also an important last step in the cycle, one that

doesn‟t occur all the time: refactoring. The production code is

quite simple so there‟s no need for it; however, the tests have a

lot of duplication in them. Let‟s get rid of that: their purpose is

to pass a string to the Eval method and compare it to the

expected value. I‟ll write a helper method for it:

 private static void CheckEvaluation(string s, int expected)
 {
 var sut = new Evaluator();

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result);
 }

I test it first by changing a single test and re-running it:

 [TestMethod]
 public void MultipleDigitNumberIsEvaluatedToItsIntegerValue()
 {
 CheckEvaluation("324", 324);
 }

It appears to work, so here‟s the complete class, rewritten to

use the new helper method:

 [TestClass]
 public class EvaluatorTests
 {
 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void NullOrEmptyStringThrowsException()
 {
 var sut = new Evaluator();

 sut.Eval("");
 }

Marcel Popescu

20

 [TestMethod]
 public void OneDigitNumberIsEvaluatedToItsIntegerValue()
 {
 CheckEvaluation("7", 7);
 }

 [TestMethod]
 public void
OneDigitNumberIsEvaluatedToItsIntegerValue_SecondAttempt()
 {
 CheckEvaluation("5", 5);
 }

 [TestMethod]
 public void MultipleDigitNumberIsEvaluatedToItsIntegerValue()
 {
 CheckEvaluation("324", 324);
 }

 //

 private static void CheckEvaluation(string s, int expected)
 {
 var sut = new Evaluator();

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result);
 }
 }

I did not change the first method because I didn‟t want to

suggest the wrong idea to someone reading the tests; the Eval

call is not supposed to return something meaningful in that

case.

All the unit tests are still working and the duplication has been

removed. This is a good start.

TDD by example – Evaluating an expression

21

2.2. Addition

Time to attack the first acceptance test: adding two numbers. I

start, as expected, by writing a unit test. I know that I have an

acceptance test for it, but that‟s not the same thing.

Acceptance tests are end-to-end tests; they test the whole

system. Unit tests are for a single class. (I realize that right

now the distinction is meaningless, but we‟re not going to have

a single class forever.)

In any case, here‟s the first test:

 [TestMethod]
 public void AddingTwoNumbers()
 {
 CheckEvaluation("1+2", 3);
 }

It fails, of course, with the error “System.FormatException:

Input string was not in a correct format.” That is not a good

reason to fail, so I need to do something about it. (A good

reason to fail is an incorrect result.)

I can see two methods of fixing that, both quite simple: one

would be to split the string at the „+‟ sign, and evaluate the first

(or only) part being returned; the other would be to read the

string until I encounter a non-digit character and evaluate the

part before that index. The first algorithm appears to be

simpler, so I‟ll go with that:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parts = s.Split('+');
 return Convert.ToInt32(parts[0]);
 }

Marcel Popescu

22

Now the test fails the “right” way: “Assert.AreEqual failed.

Expected:<3>. Actual:<1>.” Let‟s make it work:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parts = s.Split('+');
 return parts
 .Select(part => Convert.ToInt32(part))
 .Sum();
 }

We‟re going to need an additional “using System.Linq;” to
compile and then – 6 out of 7 tests are running! It seems that I
have managed to get our first acceptance test to pass, which is
a good milestone. In fact, looking back, I appear to be close to
the “minimum feature list” goal in only a couple of hours of
coding, which is not bad at all.

2.3. Subtraction

Let‟s tackle the next acceptance test, subtraction. I‟ll start by

adding a new unit test:

 [TestMethod]
 public void SubtractingTwoNumbers()
 {
 CheckEvaluation("88-20", 68);
 }

It fails badly: “System.FormatException: Input string was not

in a correct format.” The quickest way of fixing that that I can

think of is to try addition first, then subtraction, then

evaluating a single number; that will ensure that the previous

tests are still passing:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))

TDD by example – Evaluating an expression

23

 throw new Exception();

 string[] parts;
 if (s.IndexOf('+') >= 0)
 {
 parts = s.Split('+');
 return Convert.ToInt32(parts[0]) +
Convert.ToInt32(parts[1]);
 }
 else if (s.IndexOf('-') >= 0)
 {
 parts = s.Split('-');
 return Convert.ToInt32(parts[0]) -
Convert.ToInt32(parts[1]);
 }
 else
 return Convert.ToInt32(s);
 }

All the tests pass, which is good but not enough: I need to

refactor the code, otherwise I‟m going to have a mighty mess

on my hands. (This is the most dangerous part when you‟re

coding: you‟re “in the zone”, getting results and you don‟t want

to stop and clean up the code. Technical debt accumulates very

fast and soon, you can‟t make any progress anymore. Take the

time after each unit test passes to look over the code and ask

yourself: is there a way to make the code or the tests simpler?

It will pay off.)

2.4. Refactoring

It appears that I need a way of splitting a string in parts, with

each part being either an operand (a number) or an operator

(like „+‟ or „-„). Let‟s create a method for that… by starting with

a test:

 [TestMethod]
 public void ParseReturnsAdditionElements()
 {
 var sut = new Evaluator();

Marcel Popescu

24

 var result = sut.Parse("1+2").ToList();

 Assert.AreEqual(3, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (Operand));
 Assert.IsInstanceOfType(result[1], typeof (Operator));
 Assert.IsInstanceOfType(result[2], typeof (Operand));
 }

(Add “using System.Linq;” for the .ToList() extension method.
I‟m not going to keep mentioning this… either Visual Studio
itself or the Resharper add-on, if you‟re using it, can tell you
what usings you need to make the code compile.)

The test doesn‟t compile; I need to fix that, by creating the

Operand and Operator classes and adding a public Parse

method to the Evaluator class. Because the Parse method is

supposed to return a List, I need for both Operand and

Operator to inherit from the same class; let‟s call it Element.

Right now, these three classes – Element, Operand and

Operator – have no logic (and in fact no content), so I don‟t yet

need any tests for them:

 public abstract class Element
 {
 }

 public class Operand : Element
 {
 }

 public class Operator : Element
 {
 }

I start with an empty implementation for the Parse method; it

shouldn‟t return null (that would fail with an exception) but

instead return an empty list:

 public IEnumerable<Element> Parse(string s)
 {
 return new List<Element>();

TDD by example – Evaluating an expression

25

 }

This fails with “Assert.AreEqual failed. Expected:<3>.

Actual:<0>.” So far, so good.

2.5. Parsing

How do I make the test pass? I could use a finite state machine

here, but I am not trying to find the best algorithm for

evaluating an expression; I am trying to show the TDD

process, so let‟s keep things simple. I am going to read

characters and keep track of the current state:

 public IEnumerable<Element> Parse(string s)
 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return new Operand(operand);
 operand = "";

 yield return new Operator(currentChar);
 }
 }

 if (operand != "")
 yield return new Operand(operand);
 }

In order to compile, I need to add constructors to the Operand

and Operator classes:

 public class Operand : Element
 {
 public Operand(string s)
 {
 //
 }
 }

Marcel Popescu

26

 public class Operator : Element
 {
 public Operator(char c)
 {
 //
 }
 }

The tests pass. I can now refactor the Eval method to use the

new classes:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = Parse(s).ToList();

 if (elements[1].Value == "+")
 return Convert.ToInt32(elements[0].Value) +
Convert.ToInt32(elements[2].Value);
 if (elements[1].Value == "-")
 return Convert.ToInt32(elements[0].Value) -
Convert.ToInt32(elements[2].Value);

 return Convert.ToInt32(s);
 }

I need a Value property on both the operands and the

operators; this tells me what to put in the constructors. I‟ll

make sure I got those covered by tests too:

 [TestClass]
 public class OperandTests
 {
 [TestMethod]
 public void ConstructorSetsValuePropertyCorrectly()
 {
 var sut = new Operand("123");

 Assert.AreEqual("123", sut.Value);
 }
 }

TDD by example – Evaluating an expression

27

 [TestClass]
 public class OperatorTests
 {
 [TestMethod]
 public void ConstructorSetsValuePropertyCorrectly()
 {
 var sut = new Operator('+');

 Assert.AreEqual("+", sut.Value);
 }
 }

The classes get changed to:

 public abstract class Element
 {
 public string Value { get; protected set; }
 }

 public class Operand : Element
 {
 public Operand(string s)
 {
 Value = s;
 }
 }

 public class Operator : Element
 {
 public Operator(char c)
 {
 Value = c.ToString();
 }
 }

The tests compile, but now I have three failing tests. A quick

check tells me that I‟m accessing an inexistent index. That is

easily fixed:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = Parse(s).ToList();

Marcel Popescu

28

 if (elements.Count == 3)
 {
 if (elements[1].Value == "+")
 return Convert.ToInt32(elements[0].Value) +
Convert.ToInt32(elements[2].Value);
 if (elements[1].Value == "-")
 return Convert.ToInt32(elements[0].Value) -
Convert.ToInt32(elements[2].Value);
 }

 return Convert.ToInt32(s);
 }

All tests pass now. I‟m still far from being done with the

refactoring, though – there is still a lot of duplication in the

code. Let‟s take care of it.

2.6. Extracting a new class

A class should only have one responsibility. The Evaluator

class has three:

 It parses the expression

 It identifies the operators

 Finally, it executes the correct calculation depending on

the operator

Let‟s start by extracting the Parse method into its own class.

I‟ll create a new test class and move the

ParseReturnsAdditionElements() method there:

 [TestClass]
 public class ParserTests
 {
 [TestMethod]
 public void ParseReturnsAdditionElements()
 {
 var sut = new Parser();

 var result = sut.Parse("1+2").ToList();

TDD by example – Evaluating an expression

29

 Assert.AreEqual(3, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (Operand));
 Assert.IsInstanceOfType(result[1], typeof (Operator));
 Assert.IsInstanceOfType(result[2], typeof (Operand));
 }
 }

I need a new Parser class:

 public class Parser
 {
 public IEnumerable<Element> Parse(string s)
 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return new Operand(operand);
 operand = "";

 yield return new Operator(currentChar);
 }
 }

 if (operand != "")
 yield return new Operand(operand);
 }
 }

The Evaluator class will change accordingly:

 public class Evaluator
 {
 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser();
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)

Marcel Popescu

30

 {
 if (elements[1].Value == "+")
 return Convert.ToInt32(elements[0].Value) +
Convert.ToInt32(elements[2].Value);
 if (elements[1].Value == "-")
 return Convert.ToInt32(elements[0].Value) -
Convert.ToInt32(elements[2].Value);
 }

 return Convert.ToInt32(s);
 }
 }

All the tests are still passing.

2.7. Operators

The class responsible for knowing how to compute an

operation should, logically, be the operator itself. Let‟s add a

test for that:

 [TestMethod]
 public void AdditionOperatorComputesCorrectValue()
 {
 var sut = new Operator('+');

 var result = sut.Compute(10, 20);

 Assert.AreEqual(30, result);
 }

Making the test compile is simple:

 public int Compute(int left, int right)
 {
 return 0;
 }

The test fails; making it pass is also simple:

 public int Compute(int left, int right)
 {
 return left + right;
 }

TDD by example – Evaluating an expression

31

I need a new test for subtraction:

 [TestMethod]
 public void SubtractionOperatorComputesCorrectValue()
 {
 var sut = new Operator('-');

 var result = sut.Compute(20, 10);

 Assert.AreEqual(10, result);
 }

This test fails too; making it work yields this:

 public int Compute(int left, int right)
 {
 switch (Value)
 {
 case "+":
 return left + right;
 default:
 return left - right;
 }
 }

Observation: I did not add a case for “-” because we‟d have

been left with an undefined behavior for an the default case.

Let‟s decide that an unknown operator will throw an exception

and write a test for that:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void UnknownOperatorThrowsOnCompute()
 {
 var sut = new Operator('x');

 sut.Compute(0, 0);
 }

The test fails, because the Compute method does not throw an

exception; let‟s make it pass:

 public int Compute(int left, int right)
 {

Marcel Popescu

32

 switch (Value)
 {
 case "+":
 return left + right;
 case "-":
 return left - right;
 default:
 throw new Exception("Unknown operator " + Value);
 }
 }

All tests pass again. I can now refactor the Eval method:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser();
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var op = elements[1] as Operator;
 return op.Compute(Convert.ToInt32(elements[0].Value),
Convert.ToInt32(elements[2].Value));
 }

 return Convert.ToInt32(s);
 }

I have a much better design than before, but there‟s still room

for improvement. I start by observing that the only outside

user of the Value property of the Operator class is the test. I

can change it to a private field inside the class and move the

property to the Operand class:

 public class Operator : Element
 {
 public Operator(char c)
 {
 value = c;
 }

 public int Compute(int left, int right)

TDD by example – Evaluating an expression

33

 {
 switch (value)
 {
 case '+':
 return left + right;
 case '-':
 return left - right;
 default:
 throw new Exception("Unknown operator " + value);
 }
 }

 //

 private readonly char value;
 }

 public class Operand : Element
 {
 public string Value { get; private set; }

 public Operand(string s)
 {
 Value = s;
 }
 }

I remove the first test from the OperatorTests class (the one

using the now-deleted property Value) and change the Eval

function to compile:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser();
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var op = elements[1] as Operator;
 var left = elements[0] as Operand;
 var right = elements[2] as Operand;
 return op.Compute(Convert.ToInt32(left.Value),
Convert.ToInt32(right.Value));

Marcel Popescu

34

 }

 return Convert.ToInt32(s);
 }

Since the Value property only exists on operands now, I can

change its type to int:

 public class Operand : Element
 {
 public int Value { get; private set; }

 public Operand(string s)
 {
 Value = Convert.ToInt32(s);
 }
 }

The test in the OperandTests class needs to change too:

 [TestMethod]
 public void ConstructorSetsValuePropertyCorrectly()
 {
 var sut = new Operand("123");

 Assert.AreEqual(123, sut.Value);
 }

I‟ll change the Eval method:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser();
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var left = elements[0] as Operand;
 var op = elements[1] as Operator;
 var right = elements[2] as Operand;

 return op.Compute(left.Value, right.Value);
 }

TDD by example – Evaluating an expression

35

 return Convert.ToInt32(s);
 }

Hmm… all tests pass, but something‟s still not right: the

operators should work on operands, not on ints. Let‟s fix that

by altering the operator tests:

 [TestClass]
 public class OperatorTests
 {
 [TestMethod]
 public void AdditionOperatorComputesCorrectValue()
 {
 var sut = new Operator('+');

 var result = sut.Compute(new Operand("10"), new
Operand("20"));

 Assert.AreEqual(30, result);
 }

 [TestMethod]
 public void SubtractionOperatorComputesCorrectValue()
 {
 var sut = new Operator('-');

 var result = sut.Compute(new Operand("20"), new
Operand("10"));

 Assert.AreEqual(10, result);
 }

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void UnknownOperatorThrowsOnCompute()
 {
 var sut = new Operator('x');

 sut.Compute(new Operand("0"), new Operand("0"));
 }
 }

The Compute method of the Operator class needs to change:

Marcel Popescu

36

 public int Compute(Operand left, Operand right)
 {
 switch (value)
 {
 case '+':
 return left.Value + right.Value;
 case '-':
 return left.Value - right.Value;
 default:
 throw new Exception("Unknown operator " + value);
 }
 }

Finally (for real this time!) I have a clean version of the Eval

method:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser();
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var left = elements[0] as Operand;
 var op = elements[1] as Operator;
 var right = elements[2] as Operand;

 return op.Compute(left, right);
 }

 return Convert.ToInt32(s);
 }

I have reached the minimum feature set as indicated by the

acceptance tests; furthermore, the design is quite clean –

anybody who tries to understand the code should have no

problem doing that.

There‟s still a problem with the Operator class though – that

switch statement looks really ugly. I need to replace it. The

TDD by example – Evaluating an expression

37

correct, object-oriented way of replacing a switch statement is

creating a class hierarchy and moving that switch statement to

a factory object (there are ways to remove the switch

altogether, but I don‟t know if I need to go that deep right

now). Let‟s see what the tests for this factory object look like:

 [TestClass]
 public class OperatorFactoryTests
 {
 [TestMethod]
 public void PlusSignReturnsAddOperator()
 {
 var sut = new OperatorFactory();

 var result = sut.Create('+');

 Assert.IsInstanceOfType(result, typeof (AddOperator));
 }
 }

I‟ll make the test compile and fail correctly:

 public class OperatorFactory
 {
 public Operator Create(char op)
 {
 return null;
 }
 }

 public class AddOperator : Operator
 {
 public AddOperator() : base('+')
 {
 }
 }

The test fails because we‟re not returning the correct instance;

let‟s fix that:

 public Operator Create(char op)
 {
 return new AddOperator();
 }

Marcel Popescu

38

All tests pass now. I need to add the test for the subtract

operator too:

 [TestMethod]
 public void MinusSignReturnsSubOperator()
 {
 var sut = new OperatorFactory();

 var result = sut.Create('-');

 Assert.IsInstanceOfType(result, typeof(SubOperator));
 }

Creating the SubOperator class makes the test compile and fail

correctly:

 public class SubOperator : Operator
 {
 public SubOperator() : base('-')
 {
 }
 }

The change to make the test pass is simple:

 public Operator Create(char op)
 {
 return op == '+' ? (Operator) new AddOperator() : new
SubOperator();
 }

I don‟t like the way that looks though. I‟ve decided that an

unknown operator will throw an exception:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void UnknownSignThrowsException()
 {
 var sut = new OperatorFactory();

 sut.Create('x');
 }

TDD by example – Evaluating an expression

39

This allows me to return to the switch statement in the Create

method:

 public Operator Create(char op)
 {
 switch (op)
 {
 case '+':
 return new AddOperator();
 case '-':
 return new SubOperator();
 default:
 throw new Exception();
 }
 }

All the tests pass. I can now refactor the Parse method in the

Parser class:

 public IEnumerable<Element> Parse(string s)
 {
 var operatorFactory = new OperatorFactory();

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return new Operand(operand);
 operand = "";

 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return new Operand(operand);
 }

I check that nothing got broken by rerunning the tests; they all

pass. I can now remove the switch statement from the

operator class and move the actual computation to the leaf

Marcel Popescu

40

classes. Since I‟m adding logic to the AddOperator and

SubOperator classes, I need to add tests too (I‟m basically

moving the ones from the OperatorTests class):

 [TestClass]
 public class AddOperatorTests
 {
 [TestMethod]
 public void AddOperatorComputesCorrectValue()
 {
 var sut = new AddOperator();

 var result = sut.Compute(new Operand("10"), new
Operand("20"));

 Assert.AreEqual(30, result);
 }
 }

This test is still passing – that‟s because the Operator.Compute

method hasn‟t been changed yet. I‟m getting there.

 [TestClass]
 public class SubOperatorTests
 {
 [TestMethod]
 public void SubtractionOperatorComputesCorrectValue()
 {
 var sut = new SubOperator();

 var result = sut.Compute(new Operand("20"), new
Operand("10"));

 Assert.AreEqual(10, result);
 }
 }

I can now move the logic out from the Operator class into the

leaf classes; by doing that, I discover that I don‟t need the

value field at all:

 public abstract class Operator : Element
 {
 public abstract int Compute(Operand left, Operand right);

TDD by example – Evaluating an expression

41

 }

 public class AddOperator : Operator
 {
 public override int Compute(Operand left, Operand right)
 {
 return left.Value + right.Value;
 }
 }

 public class SubOperator : Operator
 {
 public override int Compute(Operand left, Operand right)
 {
 return left.Value - right.Value;
 }
 }

The OperatorTests class is useless now, so I remove it. The

tests compile and pass.

I have reached a good point. The Evaluator class can be used

for adding or subtracting two integers and the design of the

classes is clean. The classes are small and mostly well-named.

Also importantly, I‟m quite sure everything works correctly.

What‟s next?

Marcel Popescu

42

Chapter 3. More operations

Adding more operations should be quite simple now. I‟ll start

with new acceptance tests – I‟ve decided that the next

“release” of my code will handle (integer) multiplication and

division too:

 [TestMethod]
 public void CanMultiplyTwoIntegerNumbers()
 {
 var sut = new Evaluator();

 var result = sut.Eval("12*30");

 Assert.AreEqual(360, result);
 }

 [TestMethod]
 public void CanDivideTwoIntegerNumbers()
 {
 var sut = new Evaluator();

 var result = sut.Eval("30/5");

 Assert.AreEqual(6, result);
 }

The tests fail with an obscure message: “System.Exception:

Exception of type 'System.Exception' was thrown.” Since that

looks pretty bad, let‟s fix it first; the exception is thrown in the

OperatorFactory.Create method:

 public Operator Create(char op)
 {
 switch (op)
 {
 case '+':
 return new AddOperator();
 case '-':
 return new SubOperator();
 default:
 throw new Exception(string.Format("Unknown operator
[{0}]", op));
 }

TDD by example – Evaluating an expression

43

 }

The error message is now a much better “System.Exception:

Unknown operator [/]”. Good.

There‟s also the problem of repetition in the acceptance tests.

I‟ll just copy the same method I‟m using in the EvaluatorTests

class; if I need it in a third place I‟ll extract it in a helper class:

Note: I have a rule-of-thumb to decide when to remove

duplication: I (generally) only do it if I’ve seen the

same thing three times. I can’t really justify it; use it or

not as you see fit.4

 [TestClass]
 public class AcceptanceTests
 {
 [TestMethod]
 public void CanAddTwoIntegerNumbers()
 {
 CheckEvaluation("10+25", 35);
 }

 [TestMethod]
 public void CanSubtractTwoIntegerNumbers()
 {
 CheckEvaluation("300-5", 295);
 }

 [TestMethod]
 public void CanMultiplyTwoIntegerNumbers()
 {
 CheckEvaluation("12*30", 360);
 }

 [TestMethod]
 public void CanDivideTwoIntegerNumbers()
 {
 CheckEvaluation("30/5", 6);
 }

4 I found the source of this rule at
http://c2.com/cgi/wiki?ThreeStrikesAndYouRefactor

http://c2.com/cgi/wiki?ThreeStrikesAndYouRefactor

Marcel Popescu

44

 //

 private static void CheckEvaluation(string s, int expected)
 {
 var sut = new Evaluator();

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result);
 }
 }

All the tests except for the last two pass, so I haven‟t broken

anything.

I need to add a unit test (again, it helps to think of it as an

executable specification) to the EvaluatorTests class:

 [TestMethod]
 public void MultiplyingTwoNumbers()
 {
 CheckEvaluation("12*3", 36);
 }

However, there is nothing I can do inside the Evaluator class

itself to fix the failed test. I am, to be honest, unsure if I

actually need this test here, especially since it pretty much

duplicates the acceptance test. I might come back later and

delete it.

In the meantime, where do I need to change the code to make

the test pass? I need a new operator, so I start with a test

there:

 [TestClass]
 public class MulOperatorTests
 {
 [TestMethod]
 public void MulOperatorComputesCorrectValue()
 {
 var sut = new MulOperator();

TDD by example – Evaluating an expression

45

 var result = sut.Compute(new Operand("10"), new
Operand("25"));

 Assert.AreEqual(250, result);
 }
 }

Hmm… I‟m starting to dislike the idea of passing a string to

the Operand constructor… I‟ll have to come back to that. Until

then, though, I need to create the MulOperator class:

 public class MulOperator : Operator
 {
 public override int Compute(Operand left, Operand right)
 {
 return 0;
 }
 }

Everything compiles and the test fails with “Assert.AreEqual

failed. Expected:<250>. Actual:<0>.” Good. Easy to fix:

 public override int Compute(Operand left, Operand right)
 {
 return left.Value * right.Value;
 }

The acceptance tests are still failing, though, because the

operator “*” is not known. Let‟s first specify what is supposed

to happen, by adding a test to the OperatorFactoryTests class:

 [TestMethod]
 public void AsteriskSignReturnsMulOperator()
 {
 var sut = new OperatorFactory();

 var result = sut.Create('*');

 Assert.IsInstanceOfType(result, typeof (MulOperator));
 }

The test fails; I can fix that:

Marcel Popescu

46

 public Operator Create(char op)
 {
 switch (op)
 {
 case '+':
 return new AddOperator();
 case '-':
 return new SubOperator();
 case '*':
 return new MulOperator();
 default:
 throw new Exception(string.Format("Unknown operator
[{0}]", op));
 }
 }

Success – all the tests pass, except for the acceptance test for

division. Good.

3.1. Refactoring

Let‟s refactor the OperatorFactoryTests class, there‟s too much

repetition in there. First of all, I want to extract the creation of

the system under test into a private field and create it

automatically before each test. I know there are people against

using the [TestInitialize] methods or their equivalents, but I

think this is a legitimate use:

 private OperatorFactory sut;

 [TestInitialize]
 public void SetUp()
 {
 sut = new OperatorFactory();
 }

I then remove the initialization of the sut variable from each

test and rerun them; they all still pass (except for the

acceptance test for division), so I haven‟t broken anything.

TDD by example – Evaluating an expression

47

One more change – move the Create call and the assertion to a

common method and I‟m done:

 [TestClass]
 public class OperatorFactoryTests
 {
 private OperatorFactory sut;

 [TestInitialize]
 public void SetUp()
 {
 sut = new OperatorFactory();
 }

 [TestMethod]
 public void PlusSignReturnsAddOperator()
 {
 Check('+', typeof (AddOperator));
 }

 [TestMethod]
 public void MinusSignReturnsSubOperator()
 {
 Check('-', typeof (SubOperator));
 }

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void UnknownSignThrowsException()
 {
 sut.Create('x');
 }

 [TestMethod]
 public void AsteriskSignReturnsMulOperator()
 {
 Check('*', typeof (MulOperator));
 }

 //

 private void Check(char op, Type type)
 {
 var result = sut.Create(op);

 Assert.IsInstanceOfType(result, type);

Marcel Popescu

48

 }
 }

Nothing got broken, and the tests are clearer now – there‟s less

ceremony and more substance. Good.

3.2. Division

Making the final acceptance test pass should be a breeze. I‟ll

add the unit test to the EvaluatorTests class, if only because I

haven‟t decided whether it‟s needed or not:

 [TestMethod]
 public void DividingTwoNumbers()
 {
 CheckEvaluation("12/3", 4);
 }

One important thing to note is that I‟m going to be careful that

my divisions only return integers. I don‟t want to handle

floating point numbers yet.

I add the new unit test class:

 [TestClass]
 public class DivOperatorTests
 {
 [TestMethod]
 public void DivOperatorComputesCorrectValue()
 {
 var sut = new DivOperator();

 var result = sut.Compute(new Operand("20"), new
Operand("10"));

 Assert.AreEqual(2, result);
 }
 }

and make it compile by writing the DivOperator class:

 public class DivOperator : Operator

TDD by example – Evaluating an expression

49

 {
 public override int Compute(Operand left, Operand right)
 {
 return 0;
 }
 }

I know that, by this time, you‟re asking yourself why I don‟t

just go straight to the correct implementation. I recommend

against it, at least until you‟ve been doing this for a while;

making the test fail first is a good habit to get into. You want to

make sure the tests are failing because the method being

tested is incorrect, not because of some other unrelated

reason.

Now that I confirmed that the test is failing (“Assert.AreEqual

failed. Expected:<2>. Actual:<0>.”), I can make it work:

 public override int Compute(Operand left, Operand right)
 {
 return left.Value / right.Value;
 }

All that remains is returning the correct instance for the “/”

operator:

 [TestMethod]
 public void SlashSignReturnsDivOperator()
 {
 Check('/', typeof (DivOperator));
 }

Once I change the OperatorFactory.Create method, all tests

pass:

 public Operator Create(char op)
 {
 switch (op)
 {
 case '+':
 return new AddOperator();

Marcel Popescu

50

 case '-':
 return new SubOperator();
 case '*':
 return new MulOperator();
 case '/':
 return new DivOperator();
 default:
 throw new Exception(string.Format("Unknown operator
[{0}]", op));
 }
 }

I have two more acceptance tests working; two more

operations that the code can handle.

3.3. Refactoring

As I said earlier, I don‟t like the idea of Operand‟s constructor

taking a string. Transforming a string into a number is

something the parser should do, not the Operand. Let‟s alter

the Operand test:

 [TestMethod]
 public void ConstructorSetsValuePropertyCorrectly()
 {
 var sut = new Operand(123);

 Assert.AreEqual(123, sut.Value);
 }

This means changing the constructor:

 public Operand(int value)
 {
 Value = value;
 }

and the parser (right now the Parse method doesn‟t compile).

Unfortunately, there‟s no test I can change here; I don‟t like

that. There should be no code changes without a test change.

TDD by example – Evaluating an expression

51

Looking at the Parse method, I see the Operand instances are

new‟d directly; it‟s a good idea in most cases not to do that, but

to pass a factory instead. (The reason you should not new an

object directly in the code is because it violates the

Dependency Inversion Principle I‟ve mentioned before.)

Furthermore, the OperatorFactory is also new‟d inside the

method, which is bordering on absurd.

We‟ll take it easy with the changes; first, I‟ll make it compile so

I know that nothing was broken:

 public IEnumerable<Element> Parse(string s)
 {
 var operatorFactory = new OperatorFactory();

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return new Operand(Convert.ToInt32(operand));
 operand = "";

 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return new Operand(Convert.ToInt32(operand));
 }

I compile it and… oops, the individual operator tests are also

failing, so I need to change them too:

 [TestMethod]
 public void AddOperatorComputesCorrectValue()
 {
 var sut = new AddOperator();

 var result = sut.Compute(new Operand(10), new Operand(20));

Marcel Popescu

52

 Assert.AreEqual(30, result);
 }

 [TestMethod]
 public void SubtractionOperatorComputesCorrectValue()
 {
 var sut = new SubOperator();

 var result = sut.Compute(new Operand(20), new Operand(10));

 Assert.AreEqual(10, result);
 }

 [TestMethod]
 public void MulOperatorComputesCorrectValue()
 {
 var sut = new MulOperator();

 var result = sut.Compute(new Operand(10), new Operand(25));

 Assert.AreEqual(250, result);
 }

 [TestMethod]
 public void DivOperatorComputesCorrectValue()
 {
 var sut = new DivOperator();

 var result = sut.Compute(new Operand(20), new Operand(10));

 Assert.AreEqual(2, result);
 }

Ok, everything compiles and the tests pass. Good. Back to the

Parse method; the operatorFactory should be injected into the

constructor:

 public class Parser
 {
 public Parser(OperatorFactory operatorFactory)
 {
 this.operatorFactory = operatorFactory;
 }

 public IEnumerable<Element> Parse(string s)

TDD by example – Evaluating an expression

53

 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return new Operand(Convert.ToInt32(operand));
 operand = "";

 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return new Operand(Convert.ToInt32(operand));
 }

 //

 private readonly OperatorFactory operatorFactory;
 }

The ParserTests class doesn‟t compile, let‟s fix that:

 public void ParseReturnsAdditionElements()
 {
 var sut = new Parser(new OperatorFactory());

 var result = sut.Parse("1+2").ToList();

 Assert.AreEqual(3, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (Operand));
 Assert.IsInstanceOfType(result[1], typeof (Operator));
 Assert.IsInstanceOfType(result[2], typeof (Operand));
 }

Unfortunately, neither does the Evaluator.Eval method…

which creates a Parser instance instead of having one injected.

I am pretty upset that I missed this. Small steps, though, so

we‟re making everything compile first:

 public int Eval(string s)
 {

Marcel Popescu

54

 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser(new OperatorFactory());
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var left = elements[0] as Operand;
 var op = elements[1] as Operator;
 var right = elements[2] as Operand;

 return op.Compute(left, right);
 }

 return Convert.ToInt32(s);
 }

Good. The Parser class still receives an instance of an actual

class but, since I am not sure about the advantage of extracting

an interface in this case I decide to leave it as it is for now.

I still need to extract the new-ing of the Operand though; that

means an OperandFactory class, which means an

OperandFactoryTests unit test:

 [TestClass]
 public class OperandFactoryTests
 {
 [TestMethod]
 public void CreateReturnsOperand()
 {
 var sut = new OperandFactory();

 var result = sut.Create(5);

 Assert.IsInstanceOfType(result, typeof (Operand));
 }
 }

Making it compile is simple:

 public class OperandFactory
 {

TDD by example – Evaluating an expression

55

 public Operand Create(int value)
 {
 return null;
 }
 }

The test fails because I‟m not returning the correct type, so

let‟s do the simplest thing that can make it pass:

 public class OperandFactory
 {
 public Operand Create(int value)
 {
 return new Operand(0);
 }
 }

The test passes; the fact that I haven‟t used the value tells me I

need another test:

 [TestMethod]
 public void CreateReturnsOperandWithCorrectValue()
 {
 var sut = new OperandFactory();

 var result = sut.Create(5);

 Assert.AreEqual(5, result.Value);
 }

The test fails correctly (that is, because the Value property is

not 5), so I make it pass:

 public Operand Create(int value)
 {
 return new Operand(value);
 }

All is good.

Back to the Parse method; the Parser will need an

OperandFactory argument to its constructor, so I modify the

test:

Marcel Popescu

56

 [TestMethod]
 public void ParseReturnsAdditionElements()
 {
 var sut = new Parser(new OperatorFactory(), new
OperandFactory());

 var result = sut.Parse("1+2").ToList();

 Assert.AreEqual(3, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (Operand));
 Assert.IsInstanceOfType(result[1], typeof (Operator));
 Assert.IsInstanceOfType(result[2], typeof (Operand));
 }

The simplest way to make it compile is to just accept the

additional argument and not do anything with it:

 public Parser(OperatorFactory operatorFactory, OperandFactory
operandFactory)
 {
 this.operatorFactory = operatorFactory;
 }

The Evaluator.Eval method also needs to be changed:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)
 {
 var left = elements[0] as Operand;
 var op = elements[1] as Operator;
 var right = elements[2] as Operand;

 return op.Compute(left, right);
 }

 return Convert.ToInt32(s);
 }

TDD by example – Evaluating an expression

57

All tests pass… which is bad, because I‟m not doing anything

with the operandFactory argument. Oops.

3.4. Mocking

Now… the fastest way of fixing this is to go ahead and make

the changes I know I should make – add a private

operandFactory field, assign it in the constructor and use it in

the Parse method. The correct way is to write a test exposing

the problem. As before, I am going to show you the correct

way; you can skip ahead to 3.5 if you want, but I don‟t

recommend it if you‟re new to all this TDD stuff (and if you‟re

not, you‟re probably bored to tears already).

Ok. Back to serious business. I need to verify that the Create

method of the operandFactory object has actually been called.

That means I need a mocking framework… and, since most

mocking frameworks only work with interfaces, it means I

need to extract an interface from the OperandFactory class.

Let‟s start with the mocking framework; I prefer the Moq

framework myself, but most of the others should behave

similarly. Right-click the References folder in the

Math.ExpressionEvaluator.Tests project and choose the

“Manage NuGet Packages” command; search for “Moq” in the

Online category, click Install in the first item and then close

the window.

I now need to extract an interface from the OperandFactory

class; I‟ll name it IOperandFactory, even though I am very

much against the idea of naming interfaces with an “I”,

because I just can‟t come up with a name for it. (In fact, I think

OperandFactory should be the interface, but I can‟t come up

with a name for the implementing class, so that doesn‟t help.)

Marcel Popescu

58

I‟ll just use IOperandFactory until I can come up with

something better:

 public interface IOperandFactory
 {
 Operand Create(int value);
 }

 public class OperandFactory : IOperandFactory
 {
 public Operand Create(int value)
 {
 return new Operand(value);
 }
 }

The Parser class should depend on the interface:

 public Parser(OperatorFactory operatorFactory, IOperandFactory
operandFactory)
 {
 this.operatorFactory = operatorFactory;
 }

I can now write the test to verify that the

IOperandFactory.Create method is being called:

 [TestMethod]
 public void ParseCallsOperandFactoryCreate()
 {
 var operandFactory = new Mock<IOperandFactory>();
 operandFactory
 .Setup(it => it.Create(It.IsAny<int>()))
 .Verifiable();

 var sut = new Parser(new OperatorFactory(),
operandFactory.Object);

 sut.Parse("1").ToList();

 operandFactory.Verify();
 }

TDD by example – Evaluating an expression

59

This will require some explaining. I started by creating the

mock – a fake implementation of the IOperandFactory

interface that I can use to (in this case) verify that a particular

method is being called:

 var operandFactory = new Mock<IOperandFactory>();

I tell the mock object which call I want to monitor and indicate

that I don‟t care about the actual value being passed to it:

 operandFactory
 .Setup(it => it.Create(It.IsAny<int>()))
 .Verifiable();

When I create the Parser object I can‟t give it the mock object

directly (the mock object has all these additional methods, and

it is not actually an IOperandFactory); instead, I use the

Object property, which implements the desired interface:

 var sut = new Parser(new OperatorFactory(),
operandFactory.Object);

I now invoke the Parse method; the ToList() call is there to

ensure that the method is actually being executed (an iterator

method is not executed until you‟re actually starting to use the

elements it returns):

 sut.Parse("1").ToList();

Finally, I verify that the method I wanted to monitor was

called:

 operandFactory.Verify();

I run the tests and, of course, the verification fails with

“Moq.MockVerificationException: The following setups were

not matched: IOperandFactory it =>

it.Create(It.IsAny<Int32>())”.

Marcel Popescu

60

I can now fix the Parser class as I described earlier:

 public class Parser
 {
 public Parser(OperatorFactory operatorFactory, IOperandFactory
operandFactory)
 {
 this.operatorFactory = operatorFactory;
 this.operandFactory = operandFactory;
 }

 public IEnumerable<Element> Parse(string s)
 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 operand = "";

 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 }

 //

 private readonly OperatorFactory operatorFactory;
 private readonly IOperandFactory operandFactory;
 }

All tests pass – success!

3.5. More dependencies

I haven‟t forgotten about the hidden dependency in the

Evaluator class. The Parser should be injected in the

TDD by example – Evaluating an expression

61

constructor, not created inside the method. The

CheckEvaluation helper method and the first test in the

EvaluatorTests class should be changed:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void NullOrEmptyStringThrowsException()
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var sut = new Evaluator(parser);

 sut.Eval("");
 }

 private static void CheckEvaluation(string s, int expected)
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var sut = new Evaluator(parser);

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result);
 }

I‟ll change the Evaluator class to work correctly; I‟m not going

to go through the mocking stage again, even though I am

afraid I might come to regret it:

 public class Evaluator
 {
 public Evaluator(Parser parser)
 {
 this.parser = parser;
 }

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = parser.Parse(s).ToList();

 if (elements.Count == 3)

Marcel Popescu

62

 {
 var left = elements[0] as Operand;
 var op = elements[1] as Operator;
 var right = elements[2] as Operand;

 return op.Compute(left, right);
 }

 return Convert.ToInt32(s);
 }

 //

 private readonly Parser parser;
 }

The AcceptanceTests class complains about it, so its

CheckEvaluation method needs changing too:

 private static void CheckEvaluation(string s, int expected)
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var sut = new Evaluator(parser);

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result);
 }

(As you can see, the duplication I haven‟t removed earlier is

starting to become a problem. I want to finish this stage,

though, so I continue to ignore it.)

All tests pass; I now have a cleaner design than I had at the

start of this chapter, plus two new operations. Might not seem

like a lot, but – if you followed along – this whole process

should not have taken more than a few hours.

Next chapter we‟re going to attack multiple operations.

TDD by example – Evaluating an expression

63

Chapter 4. Multiple operations

Ok… until now we‟ve only handled a single operation. Let‟s see

how I can evaluate more than that, by adding an acceptance

test:

 [TestMethod]
 public void MultipleOperations()
 {
 CheckEvaluation("2+3*5-8/2", 13);
 }

I don‟t yet want to handle operator precedence so I‟ll avoid

that in the unit test (the EvaluatorTests class):

 [TestMethod]
 public void TwoOperations()
 {
 CheckEvaluation("2*3-5", 1);
 }

The test fails on the last line of the Evaluator.Eval method.

Since it got there, I‟m assuming that the parser did not return

3 elements… but I‟ll write a test to check that:

 [TestMethod]
 public void MultipleOperandAndOperatorsAreParsedCorrectly()
 {
 var sut = new Parser(new OperatorFactory(), new
OperandFactory());

 var result = sut.Parse("1+2*3-4").ToList();

 Assert.AreEqual(7, result.Count);
 Assert.IsInstanceOfType(result[0], typeof(Operand));
 Assert.IsInstanceOfType(result[1], typeof(Operator));
 Assert.IsInstanceOfType(result[2], typeof(Operand));
 Assert.IsInstanceOfType(result[3], typeof(Operator));
 Assert.IsInstanceOfType(result[4], typeof(Operand));
 Assert.IsInstanceOfType(result[5], typeof(Operator));
 Assert.IsInstanceOfType(result[6], typeof(Operand));
 }

It passes; good.

Marcel Popescu

64

Back to the Eval method: how to I handle the (normal) case

with more than just 3 elements? The answer is rather obvious:

I go through all the elements, from left to right, and replace

the first (operand, operator, operand) tuple I encounter with

the result of the operation; each time I do that, I restart the

whole thing from the beginning (since I‟ve changed the

number of elements):

 public class Evaluator
 {
 public Evaluator(Parser parser)
 {
 this.parser = parser;
 }

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = parser.Parse(s).ToList();

 while (elements.Count > 1)
 {
 var tupleIndex = FindOperation(elements);
 var newElement = Compute(elements[tupleIndex],
elements[tupleIndex + 1], elements[tupleIndex + 2]);

 ReplaceOperation(elements, tupleIndex, newElement);
 }

 return (elements[0] as Operand).Value;
 }

 //

 private readonly Parser parser;

 private static int FindOperation(List<Element> elements)
 {
 for (var i = 0; i < elements.Count; i++)
 if (elements[i] is Operator)
 return i - 1;

TDD by example – Evaluating an expression

65

 return 0;
 }

 private static Operand Compute(Element lOperand, Element op,
Element rOperand)
 {
 return new Operand((op as Operator).Compute(lOperand as
Operand, rOperand as Operand));
 }

 private static void ReplaceOperation(IList elements, int index,
Operand operand)
 {
 elements.RemoveAt(index + 2);
 elements.RemoveAt(index + 1);
 elements.RemoveAt(index);

 elements.Insert(index, operand);
 }
 }

All tests pass except for the acceptance test, which fails with

“Expected:<13>. Actual:<8>.” – this means precedence is not

respected, which I knew. However, left-to-right multiple

operations work correctly. Good.

4.1. Smells-driven refactoring

TDD tends to highlight “pain points” in the code. If you ignore

them, they multiply and soon testing becomes impossible.

That is not a good idea.

There are also things in the code that you learn to be wary of

as you program. Static methods, for example, sometimes

signal that a new class should be created. So does the overuse

of specific indexes (like “index + 2” above) or the overuse of

casts.

I‟ll start by extracting the tuple into a separate class. I‟ll call

this class Operation:

Marcel Popescu

66

 public class Operation
 {
 public Operand LOperand { get; private set; }
 public Operator Op { get; private set; }
 public Operand ROperand { get; private set; }

 public Operation(Operand lOperand, Operator op, Operand
rOperand)
 {
 LOperand = lOperand;
 Op = op;
 ROperand = rOperand;
 }
 }

The Evaluator class changes accordingly:

 public class Evaluator
 {
 public Evaluator(Parser parser)
 {
 this.parser = parser;
 }

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = parser.Parse(s).ToList();

 while (elements.Count > 1)
 {
 var tuple = FindOperation(elements);
 var newElement = Compute(tuple.Item2);

 ReplaceOperation(elements, tuple.Item1, newElement);
 }

 return (elements[0] as Operand).Value;
 }

 //

 private readonly Parser parser;

TDD by example – Evaluating an expression

67

 private static Tuple<int, Operation>
FindOperation(List<Element> elements)
 {
 for (var i = 0; i < elements.Count; i++)
 if (elements[i] is Operator)
 return new Tuple<int, Operation>(i - 1, new
Operation(elements[i - 1] as Operand, elements[i] as Operator,
elements[i + 1] as Operand));

 return null;
 }

 private static Operand Compute(Operation operation)
 {
 return new Operand(operation.Op.Compute(operation.LOperand,
operation.ROperand));
 }

 private static void ReplaceOperation(IList elements, int index,
Operand operand)
 {
 elements.RemoveAt(index + 2);
 elements.RemoveAt(index + 1);
 elements.RemoveAt(index);

 elements.Insert(index, operand);
 }
 }

The Compute method screams to be moved to the Operation

class:

 public Operand Compute()
 {
 return new Operand(Op.Compute(LOperand, ROperand));
 }

which means removing it from the Evaluator class and

changing the Eval method:

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

Marcel Popescu

68

 var elements = parser.Parse(s).ToList();

 while (elements.Count > 1)
 {
 var tuple = FindOperation(elements);
 var newElement = tuple.Item2.Compute();

 ReplaceOperation(elements, tuple.Item1, newElement);
 }

 return (elements[0] as Operand).Value;
 }

Since the logic of the Operation.Compute method is very

simple, I can ignore the lack of a test (I don‟t know what I

would test anyway… I guess I could test that Op.Compute is

being called, but I would have to make a lot of changes and I

don‟t think the benefit justifies the cost).

Ok, all the tests, except for the acceptance test, are still

passing. We‟re not done with the refactoring though.

4.2. Lists

Every time your program has a list of somethings, it‟s a good

idea to ask yourself if it cannot be replaced by a custom class.

The application will seldom need the whole power of List<T>,

or T[], or whatever else you‟re using; in most cases you only

need a few operations. Using a naked list leaks too much

information and risks using too much internal knowledge

where it shouldn‟t be used, which in turn makes the whole

thing harder to change.

In this particular case, I‟m using indices all over the place in

the Eval method. The Eval method should not know about

indices, or its knowledge should at least be limited. I should

replace the List<Element> with an ElementList class. (Note

TDD by example – Evaluating an expression

69

that both the overuse of indices and the static methods suggest

this change.)

How would the ElementList class be used? I don‟t need Count,

IndexOf, RemoveAt or anything like that; I need

FindOperation and ReplaceOperation methods. I‟ll start with

the first:

 [TestClass]
 public class ElementListTests
 {
 [TestMethod]
 public void FindOperationReturnsFirstOperation()
 {
 var lOperand = new Operand(0);
 var op = new AddOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { new Operand(0), new
Operand(0), lOperand, op, rOperand });

 var result = sut.FindOperation();

 Assert.AreEqual(lOperand, result.LOperand);
 Assert.AreEqual(op, result.Op);
 Assert.AreEqual(rOperand, result.ROperand);
 }
 }

Making the test compile is simple:

 public class ElementList
 {
 public ElementList(IList<Element> elements)
 {
 //
 }

 public Operation FindOperation()
 {
 return null;
 }
 }

Marcel Popescu

70

Making it pass is not that much harder, since I already have

the method:

 public class ElementList
 {
 public ElementList(IList<Element> elements)
 {
 this.elements = elements;
 }

 public Operation FindOperation()
 {
 for (var i = 0; i < elements.Count; i++)
 if (elements[i] is Operator)
 return new Operation(elements[i - 1] as Operand,
elements[i] as Operator, elements[i + 1] as Operand);

 return null;
 }

 //

 private readonly IList<Element> elements;
 }

I don‟t return the index because I don‟t believe I need it

anymore. Let‟s see if I am right:

 [TestMethod]
 public void ReplaceOperationReplacesTheCorrectOne()
 {
 var otherOpd1 = new Operand(0);
 var otherOp = new AddOperator();
 var otherOpd2 = new Operand(0);
 var lOperand = new Operand(0);
 var op = new AddOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { otherOpd1, otherOp,
otherOpd2, lOperand, op, rOperand });
 var operation = new Operation(lOperand, op, rOperand);

 sut.ReplaceOperation(operation, new Operand(0));

 // to confirm the replacement was correct, FindOperation
should return the "other" one

TDD by example – Evaluating an expression

71

 var result = sut.FindOperation();
 Assert.AreEqual(otherOpd1, result.LOperand);
 Assert.AreEqual(otherOp, result.Op);
 Assert.AreEqual(otherOpd2, result.ROperand);
 }

Making it compile:

 public void ReplaceOperation(Operation operation, Operand
operand)
 {
 //
 }

Confirming that the test fails… oops. It doesn‟t.

I tried to be too clever. I foresaw a potential problem (what if

the ReplaceOperation algorithm is incorrectly implemented,

so that it always replaces the first operation it finds) and that‟s

why I made the test change the second one. I‟ll disable this test

for now using the [Ignore] attribute (I think it‟s a good test to

have, after I have a working implementation) and add one that

tests that ReplaceOperation works at all:

 [TestMethod]
 public void ReplaceOperationWorks()
 {
 var lOperand = new Operand(0);
 var op = new AddOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { lOperand, op,
rOperand });
 var operation = new Operation(lOperand, op, rOperand);

 sut.ReplaceOperation(operation, new Operand(0));

 // FindOperation should return null now
 var result = sut.FindOperation();
 Assert.IsNull(result);
 }

 [TestMethod]
 [Ignore]

Marcel Popescu

72

 public void ReplaceOperationReplacesTheCorrectOne()
 {
 var otherOpd1 = new Operand(0);
 var otherOp = new AddOperator();
 var otherOpd2 = new Operand(0);
 var lOperand = new Operand(0);
 var op = new AddOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { otherOpd1, otherOp,
otherOpd2, lOperand, op, rOperand });
 var operation = new Operation(lOperand, op, rOperand);

 sut.ReplaceOperation(operation, new Operand(0));

 // to confirm the replacement was correct, FindOperation
should return the "other" one
 var result = sut.FindOperation();
 Assert.AreEqual(otherOpd1, result.LOperand);
 Assert.AreEqual(otherOp, result.Op);
 Assert.AreEqual(otherOpd2, result.ROperand);
 }

The ReplaceOperationWorks test fails. Let‟s make it pass:

 public void ReplaceOperation(Operation operation, Operand
operand)
 {
 elements.RemoveAt(2);
 elements.RemoveAt(1);
 elements[0] = operand;
 }

Running the test… it fails with

“System.NotSupportedException: Collection was of a fixed

size.” Huh? Looking it up, it seems that the problem is that I‟m

assigning an array to an IList and an array cannot change size.

Oh well, I was worried about changing the list I got injected

into the constructor anyway. Let‟s change the constructor to

make this work:

 public ElementList(IEnumerable<Element> elements)
 {
 this.elements = new List<Element>(elements);

TDD by example – Evaluating an expression

73

 }

Now the test passes. Good, let me re-enable the test I disabled

and see what happens. It fails with a not very clear message

(“Assert.AreEqual failed.

Expected:<Renfield.Math.ExpressionEvaluator.Operand>.

Actual:<Renfield.Math.ExpressionEvaluator.Operand>.”) but

at least it fails where expected. It can be made to pass:

 public void ReplaceOperation(Operation operation, Operand
operand)
 {
 var index = elements.IndexOf(operation.LOperand);

 elements.RemoveAt(index + 2);
 elements.RemoveAt(index + 1);
 elements[index] = operand;
 }

I can now go back to the Evaluator.Eval method:

 public class Evaluator
 {
 public Evaluator(Parser parser)
 {
 this.parser = parser;
 }

 public int Eval(string s)
 {
 if (string.IsNullOrEmpty(s))
 throw new Exception();

 var elements = new ElementList(parser.Parse(s));

 var operation = elements.FindOperation();
 while (operation != null)
 {
 var newElement = operation.Compute();
 elements.ReplaceOperation(operation, newElement);

 operation = elements.FindOperation();
 }

Marcel Popescu

74

 return elements.First.Value;
 }

 //

 private readonly Parser parser;
 }

I had to add a First property to the ElementList class, so I‟ll

write a test for it:

 [TestMethod]
 public void FirstReturnsFirstElement()
 {
 var lOperand = new Operand(0);
 var op = new AddOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { lOperand, op,
rOperand });

 var result = sut.First;

 Assert.AreEqual(lOperand, result);
 }

Making it compile:

 public Operand First
 {
 get { return null; }
 }

Whoa… I just broke everything (only 19 tests pass, 14 fail).

Quickly, let‟s fix that:

 public Operand First
 {
 get { return elements[0] as Operand; }
 }

Whew.

The refactoring was so far a success… partially, at least. I don‟t

like the “feature envy” smell I can see in the Eval method –

TDD by example – Evaluating an expression

75

most of its logic asks an ElementList for something, processes

that something and then sends the result back to the

ElementList. It strongly looks like the whole thing should be

inside ElementList, but then I‟d have just renamed the

Evaluator class to ElementList. I guess I prefer keeping the list

management and the expression evaluation logic in two

separate classes, so it stays like this for now.

4.3. Operator precedence

It‟s time to bite the bullet and fix the last acceptance test. I‟ll

start with a unit test in the EvaluatorTests class:

 [TestMethod]
 public void TwoOperationsRespectingPrecedence()
 {
 CheckEvaluation("2+3*5", 17);
 }

This fails with the message “Expected:<17>. Actual:<25>.”

How do I fix it? I need to add a new property to the Operator

class. I haven‟t needed an OperatorTests class yet so I‟ll add

one:

 [TestClass]
 public class OperatorTests
 {
 [TestMethod]
 public void AddOperatorPrecedenceIsSetCorrectly()
 {
 var sut = new AddOperator();

 Assert.AreEqual(1, sut.Precedence);
 }
 }

Since the Operator class itself is abstract, I can‟t create an

instance, but I consider these to be generic Operator tests so I

won‟t move them to the AddOperatorTests class.

Marcel Popescu

76

The change to the Operator class is easy to make:

 public abstract class Operator : Element
 {
 public int Precedence { get; protected set; }

 public abstract int Compute(Operand left, Operand right);
 }

The test fails, so I need to add a constructor to make it pass:

 public AddOperator()
 {
 Precedence = 1;
 }

The test passes. I‟ll add the other three tests in the same

method (and rename it):

 [TestMethod]
 public void OperatorPrecedenceIsSetCorrectly()
 {
 Assert.AreEqual(1, new AddOperator().Precedence);
 Assert.AreEqual(1, new SubOperator().Precedence);
 Assert.AreEqual(2, new MulOperator().Precedence);
 Assert.AreEqual(2, new DivOperator().Precedence);
 }

The changes are trivial:

 public SubOperator()
 {
 Precedence = 1;
 }

 public MulOperator()
 {
 Precedence = 2;
 }

 public DivOperator()
 {
 Precedence = 2;
 }

TDD by example – Evaluating an expression

77

The tests pass now – I still have the acceptance test and the

new Evaluator unit test failing, of course. To fix that, the

FindOperation method needs to return the first operation with

the highest precedence; that‟s a new test in the

ElementListTests class:

 [TestMethod]
 public void FindOperationReturnsHighestPrecedence()
 {
 var lOperand = new Operand(0);
 var op = new MulOperator();
 var rOperand = new Operand(0);
 var sut = new ElementList(new Element[] { new Operand(0), new
AddOperator(), new Operand(0), lOperand, op, rOperand });

 var result = sut.FindOperation();

 Assert.AreEqual(lOperand, result.LOperand);
 Assert.AreEqual(op, result.Op);
 Assert.AreEqual(rOperand, result.ROperand);
 }

The test fails, as expected. Let‟s fix it:

 public Operation FindOperation()
 {
 var operators = elements.Where(el => el is
Operator).Cast<Operator>();
 if (!operators.Any())
 return null;

 // I don't know if OrderByDescending is stable so I won't use
that
 var maxPrecedence = operators.Max(op => op.Precedence);
 var firstOp = operators.First(op => op.Precedence ==
maxPrecedence);

 var index = elements.IndexOf(firstOp);
 return new Operation(elements[index - 1] as Operand,
elements[index] as Operator, elements[index + 1] as Operand);
 }

All tests are passing; the evaluator is now respecting operator

precedence.

Marcel Popescu

78

Chapter 5. More complex expressions

I need to add support for parentheses; also, since I‟ve never

used them before, I‟ll add some negative numbers in the mix:

 [TestMethod]
 public void ComplexExpression()
 {
 CheckEvaluation("-2+3*(-5+8-9)/2", -11);
 }

The test fails. I‟ll start fixing that with handling negative

numbers.

5.1. Negative numbers

There is a problem with the way I‟m identifying operations:

I‟m assuming that an operator is binary (it has operands on

both sides). However, negative numbers use a unary operator

– it only has an operand on the right side. Let‟s expose that

problem with a test:

 [TestMethod]
 public void NegativeNumber()
 {
 CheckEvaluation("-3", -3);
 }

It fails… inside the parser. I didn‟t realize that, but the parser

can‟t handle a non-empty string that nevertheless doesn‟t start

with a digit:

 [TestMethod]
 public void NegativeNumber()
 {
 var sut = new Parser(new OperatorFactory(), new
OperandFactory());

 var result = sut.Parse("-3").ToList();

 Assert.AreEqual(2, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (SubOperator));

TDD by example – Evaluating an expression

79

 Assert.AreEqual(3, ((Operand) result[1]).Value);
 }

The test fails as expected. Fixing it is simple:

 public IEnumerable<Element> Parse(string s)
 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 operand = "";

 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 }

The test passes. I fixed the Parser class; now the ElementList

class has a problem – FindOperation throws because of the

missing operand to the left. I‟ll expose the problem with a test:

 [TestMethod]
 public void FindOperationCanHandleNegativeNumbers()
 {
 var op = new SubOperator();
 var rOperand = new Operand(1);
 var sut = new ElementList(new Element[] { op, rOperand });

 var result = sut.FindOperation();

 Assert.IsNull(result.LOperand);
 Assert.AreEqual(op, result.Op);
 Assert.AreEqual(rOperand, result.ROperand);
 }

Marcel Popescu

80

Fixing it means treating the case where the index is out of

range:

 public Operation FindOperation()
 {
 var operators = elements.Where(el => el is
Operator).Cast<Operator>();
 if (!operators.Any())
 return null;

 // I don't know if OrderByDescending is stable so I won't use
that
 var maxPrecedence = operators.Max(op => op.Precedence);
 var firstOp = operators.First(op => op.Precedence ==
maxPrecedence);

 var index = elements.IndexOf(firstOp);
 return new Operation(GetOperand(index - 1), elements[index]
as Operator, GetOperand(index + 1));
 }

 private Operand GetOperand(int index)
 {
 return index < 0 || index >= elements.Count
 ? null
 : elements[index] as Operand;
 }

The EvaluatorTests.NegativeNumber test is still failing,

however… because the SubOperator.Compute method expects

a non-null left operand. I think it would be better to return a

zero instead of a null operand, so I‟ll change the

ElementListTests test:

 [TestMethod]
 public void FindOperationCanHandleNegativeNumbers()
 {
 var op = new SubOperator();
 var rOperand = new Operand(1);
 var sut = new ElementList(new Element[] { op, rOperand });

 var result = sut.FindOperation();

TDD by example – Evaluating an expression

81

 Assert.AreEqual(0, result.LOperand.Value);
 Assert.AreEqual(op, result.Op);
 Assert.AreEqual(rOperand, result.ROperand);
 }

Fixing it is simple:

 private Operand GetOperand(int index)
 {
 return index < 0 || index >= elements.Count
 ? new Operand(0)
 : elements[index] as Operand;
 }

This test passes, but the NegativeNumber test is still failing –

this time because of the ReplaceOperation method. I‟ll write a

test for it:

 [TestMethod]
 public void ReplaceOperationCanHandleNegativeNumbers()
 {
 var op = new SubOperator();
 var rOperand = new Operand(1);
 var sut = new ElementList(new Element[] { op, rOperand });
 var operation = sut.FindOperation();

 sut.ReplaceOperation(operation, new Operand(-1));

 Assert.AreEqual(-1, sut.First.Value);
 Assert.IsNull(sut.FindOperation());
 }

The test fails because the ReplaceOperation method wants to

delete the left operand too, not to mention it‟s trying to find

the operation by looking for the left operand (and not finding

it). I‟ll fix it:

 public void ReplaceOperation(Operation operation, Operand
operand)
 {
 var index = elements.IndexOf(operation.Op);

 if (GetOperand(index + 1) == operation.ROperand)
 elements.RemoveAt(index + 1);

Marcel Popescu

82

 elements[index] = operand;
 if (GetOperand(index - 1) == operation.LOperand)
 elements.RemoveAt(index - 1);
 }

(Note, again, that I‟m changing the code in small increments

and it only takes a minute to do so.)

All the tests, except for the acceptance test, are now passing.

5.2. Parentheses

I‟ll start with a simple case, a number within parentheses:

 [TestMethod]
 public void NumberInParentheses()
 {
 CheckEvaluation("(3)", 3);
 }

The test fails with the message “Unknown operator [(]”,

because the parser sees a non-digit character and assumes it‟s

an operator. I could add a new type inheriting from Element

(or two – for open and closed parentheses) but I prefer

another way of dealing with this: I‟ll use a “precedence

booster” that increases by 10 every time I encounter an open

parenthesis and decreases by 10 for every closing parenthesis.

Each time I find an operator, add the value of the booster to

the default precedence of the operator. (This algorithm also

has the benefit that I can easily detect unbalanced parentheses

– if the booster is not zero at the end, something is wrong.)

The change has to be made inside the parser. I start by adding

a test to the ParserTests class just to confirm that it doesn‟t

break on parentheses:

 [TestMethod]
 public void NumberInParentheses()
 {

TDD by example – Evaluating an expression

83

 var sut = new Parser(new OperatorFactory(), new
OperandFactory());

 var result = sut.Parse("(3)").ToList();

 Assert.AreEqual(1, result.Count);
 Assert.AreEqual(3, ((Operand) result[0]).Value);
 }

I‟ll fix it in the simplest way, by ignoring the open/closing

parentheses:

 public IEnumerable<Element> Parse(string s)
 {
 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 operand = "";

 if (currentChar != '(' && currentChar != ')')
 yield return operatorFactory.Create(currentChar);
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 }

I‟m a bit surprised – all the tests pass except for the

acceptance test.

Time for a short break – I‟ll extract the creation of the parser

into a private method; all tests except for the second one

(ParseCallsOperandFactoryCreate) will use this method:

 private static Parser CreateParser()

Marcel Popescu

84

 {
 return new Parser(new OperatorFactory(), new
OperandFactory());
 }

The same tests still pass, so I didn‟t break anything. Ok, I need

a parser test to handle the precedence boost:

 [TestMethod]
 public void OperatorsInParenthesesGetAPrecedenceBoost()
 {
 var sut = CreateParser();

 var result = sut.Parse("(1+2)").ToList();

 Assert.AreEqual(3, result.Count);
 Assert.AreEqual(1, ((Operand) result[0]).Value);
 Assert.AreEqual(11, ((Operator) result[1]).Precedence);
 Assert.AreEqual(2, ((Operand) result[2]).Value);
 }

This test fails, predictably, with “Expected:<11>. Actual:<1>.”

Fixing it will require several changes, beginning with the Parse

method:

 public IEnumerable<Element> Parse(string s)
 {
 const int BOOST = 10;

 var precedenceBoost = 0;

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar))
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 operand = "";

 if (currentChar == '(')
 precedenceBoost += BOOST;

TDD by example – Evaluating an expression

85

 else if (currentChar == ')')
 precedenceBoost -= BOOST;
 else
 yield return operatorFactory.Create(currentChar,
precedenceBoost);
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToInt32(operand));
 }

This doesn‟t compile because of the additional argument to the

operatorFactory.Create call. I‟ll change the

OperatorFactoryTests.Check private method to add the new

parameter:

 private void Check(char op, Type type)
 {
 var result = sut.Create(op, 0);

 Assert.IsInstanceOfType(result, type);
 }

and then change the OperatorFactory.Create method:

 public Operator Create(char op, int precedenceBoost)
 {
 switch (op)
 {
 case '+':
 return new AddOperator(precedenceBoost);
 case '-':
 return new SubOperator(precedenceBoost);
 case '*':
 return new MulOperator(precedenceBoost);
 case '/':
 return new DivOperator(precedenceBoost);
 default:
 throw new Exception(string.Format("Unknown operator
[{0}]", op));
 }
 }

Marcel Popescu

86

This means changing all four operator classes; I‟ll add a new

test to the AddOperatorTests class to show how the boost is

taken into account:

 [TestMethod]
 public void TakesPrecedenceBoostIntoAccount()
 {
 var sut = new AddOperator(7);

 Assert.AreEqual(8, sut.Precedence);
 }

The change to the AddOperator class is simple:

 public AddOperator(int precedenceBoost = 0)
 {
 Precedence = 1 + precedenceBoost;
 }

The changes to the other three operators (and the matching

test classes) are similar so I‟m not going to show them.

Everything compiles except for a test in the

OperatorFactoryTests class; easily fixed:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void UnknownSignThrowsException()
 {
 sut.Create('x', 0);
 }

All the tests pass except for the acceptance test, which

complains about the negative number in parentheses. Good

point – I need a new test for that in the EvaluatorTests class:

 [TestMethod]
 public void NegativeNumberInParentheses()
 {
 CheckEvaluation("(-3)", -3);
 }

TDD by example – Evaluating an expression

87

Hmm… this one passes. Ok, a more complicated one:

 [TestMethod]
 public void AddANegativeNumberInParentheses()
 {
 CheckEvaluation("2+(-3)", -1);
 }

Ok, this one fails. The reason it fails is more subtle… the parser

returns two successive operators and the FindOperation can‟t

handle that. Let‟s expose the problem with a test in the

ElementListTests class:

 [TestMethod]
 public void FindOperationCanHandleTwoSuccessiveOperators()
 {
 var opd1 = new Operand(1);
 var op1 = new AddOperator();
 var op2 = new SubOperator(10);
 var opd2 = new Operand(2);
 var sut = new ElementList(new Element[] { opd1, op1, op2,
opd2 });

 var result = sut.FindOperation();

 Assert.AreEqual(0, result.LOperand.Value);
 Assert.AreEqual(op2, result.Op);
 Assert.AreEqual(opd2, result.ROperand);
 }

This fails with “Object reference not set to an instance of an

object.” on the first assert. Let‟s fix it:

 private Operand GetOperand(int index)
 {
 if (index >= 0 && index < elements.Count && elements[index]
is Operand)
 return (Operand) elements[index];

 return new Operand(0);
 }

Success – all the tests pass!

Marcel Popescu

88

5.3. Refactoring

Minor cleanup for the ParserTests class – I want to include the

Parse call and the parser creation in a single method:

 private static List<Element> Parse(string s)
 {
 var sut = new Parser(new OperatorFactory(), new
OperandFactory());

 return sut.Parse(s).ToList();
 }

The first test becomes:

 [TestMethod]
 public void ParseReturnsAdditionElements()
 {
 var result = Parse("1+2");

 Assert.AreEqual(3, result.Count);
 Assert.IsInstanceOfType(result[0], typeof (Operand));
 Assert.IsInstanceOfType(result[1], typeof (Operator));
 Assert.IsInstanceOfType(result[2], typeof (Operand));
 }

All the tests in the ParserTests class except for the second one

change accordingly.

TDD by example – Evaluating an expression

89

Chapter 6. Floating-point numbers

One of the problems with the YAGNI mantra is that it will

create some problems if you are, in fact, going to need it.

Whether that is offset by the fact that it remains true in most

cases is, of course, up to you.

YAGNI: You Ain’t Gonna Need It – a principle of

extreme programming which says that you should

refrain from adding code to enable features that you

know are going to be added at some point in the

future. Wait until the customers are actually

requesting those features – they might never do, or the

features might be implemented in an unexpected way.

In this particular case, I knew I was going to handle floating-

point numbers eventually, but I chose not to complicate my

code too soon – there was plenty of code to write even without

adding that requirement. This is going to mean I need to

change a lot of ints to doubles, and I will also need to pay

attention to the Assert.AreEqual calls, since deciding the

equality of floating-point numbers is a bit more complicated

than that.

If you haven’t encountered this before, floating-point

operations have errors in most computer languages: 1

/ 3 * 3 will seldom be equal to 1. That being the case,

the writers of the testing framework have added an

additional “delta” (think of it as precision) parameter

to the Assert.AreEqual call; instead of

Assert.AreEqual(2.5, result) you will write

Assert.AreEqual(2.5, result, 0.01), which means any

value of result between 2.49 and 2.51 will be

considered “equal enough”.

Marcel Popescu

90

Ok. Let‟s write an acceptance test that uses floating point

numbers; because this is an acceptance test, not a unit test (so

it can check for multiple things), I‟m also going to add a couple

of levels of parentheses to see that the code handles them

correctly:

 [TestMethod]
 public void ComplexExpressionWithFloatingPointNumbers()
 {
 CheckEvaluation("1.2*6/(2.74-9.1*(-5.27)/(3+17.4*(9.15-
1.225)))", 3.08, 0.01);
 }

This means I need to change the CheckEvaluation method:

 private static void CheckEvaluation(string s, double expected,
double precision = 0.0001)
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var sut = new Evaluator(parser);

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result, precision);
 }

Running the tests shows me that only the new one fails. I‟ll

start changing the ints to doubles now. The first one is the

Evaluator.Eval method (I‟m not going to show it here, only the

return type changes).

The next class to change is Operand:

 public class Operand : Element
 {
 public double Value { get; private set; }

 public Operand(double value)
 {
 Value = value;
 }

TDD by example – Evaluating an expression

91

 }

This one breaks the operators; let‟s change those classes too:

 public abstract class Operator : Element
 {
 public int Precedence { get; protected set; }

 public abstract double Compute(Operand left, Operand right);
 }

 public class AddOperator : Operator
 {
 public AddOperator(int precedenceBoost = 0)
 {
 Precedence = 1 + precedenceBoost;
 }

 public override double Compute(Operand left, Operand right)
 {
 return left.Value + right.Value;
 }
 }

(SubOperator, MulOperator and DivOperator change

similarly.)

All the tests, except for the new acceptance test, still pass.

Huh… this is less painful than I expected.

Ok, I‟ll start working on the actual requirement. First, a new

test in the EvaluatorTests class:

 [TestMethod]
 public void FloatingPointNumber()
 {
 CheckEvaluation("1.5", 1.5, 0.01);
 }

The CheckEvaluation method will have to be changed too, just

as the one in AcceptanceTests was:

Marcel Popescu

92

 private static void CheckEvaluation(string s, double expected,
double precision = 0.0001)
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory());
 var sut = new Evaluator(parser);

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result, precision);
 }

The new unit test fails; there‟s nothing I can do about it here,

it‟s a parsing issue, so here‟s the new parser test:

 [TestMethod]
 public void FloatingPointNumber()
 {
 var result = Parse("1.5");

 Assert.AreEqual(1, result.Count);
 Assert.AreEqual(1.5, ((Operand) result[0]).Value, 0.01);
 }

This test fails with the message “Unknown operator [.]” – ok,

time to change the code:

 public IEnumerable<Element> Parse(string s)
 {
 const int BOOST = 10;

 var precedenceBoost = 0;

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar) || currentChar == '.')
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));
 operand = "";

TDD by example – Evaluating an expression

93

 if (currentChar == '(')
 precedenceBoost += BOOST;
 else if (currentChar == ')')
 precedenceBoost -= BOOST;
 else
 yield return operatorFactory.Create(currentChar,
precedenceBoost);
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));
 }

This doesn‟t compile because of the operandFactory.Create

call. Let‟s change the interface:

 public interface IOperandFactory
 {
 Operand Create(double value);
 }

and the implementation:

 public class OperandFactory : IOperandFactory
 {
 public Operand Create(double value)
 {
 return new Operand(value);
 }
 }

Let me make sure I have a test covering the change in the

OperandFactoryTests class:

 [TestMethod]
 public void CreateReturnsOperandWithCorrectFloatingPointValue()
 {
 var sut = new OperandFactory();

 var result = sut.Create(5.73);

 Assert.AreEqual(5.73, result.Value, 0.01);
 }

Marcel Popescu

94

This test passes. I‟ll take a short break to remove the

duplication in this class, since I have code repeating three

times:

 [TestClass]
 public class OperandFactoryTests
 {
 [TestMethod]
 public void CreateReturnsOperand()
 {
 var result = GetOperand(5);

 Assert.IsInstanceOfType(result, typeof (Operand));
 }

 [TestMethod]
 public void CreateReturnsOperandWithCorrectValue()
 {
 var result = GetOperand(5);

 Assert.AreEqual(5, result.Value);
 }

 [TestMethod]
 public void CreateReturnsOperandWithCorrectFloatingPointValue()
 {
 var result = GetOperand(5.73);

 Assert.AreEqual(5.73, result.Value, 0.01);
 }

 //

 private static Operand GetOperand(double value)
 {
 var sut = new OperandFactory();

 return sut.Create(value);
 }
 }

All the tests in this class pass. Running all the tests, I see that

ParserTests. ParseCallsOperandFactoryCreate fails. Duh, it‟s

still expecting an int, let me change that:

TDD by example – Evaluating an expression

95

 [TestMethod]
 public void ParseCallsOperandFactoryCreate()
 {
 var operandFactory = new Mock<IOperandFactory>();
 operandFactory
 .Setup(it => it.Create(It.IsAny<double>()))
 .Verifiable();

 var sut = new Parser(new OperatorFactory(),
operandFactory.Object);

 sut.Parse("1").ToList();

 operandFactory.Verify();
 }

All the tests pass, except for the acceptance test… which fails

with the message “Expected a difference no greater than

<0.01> between expected value <3.08> and actual value

<2.33737848474675>.” Hmm, I just wrote that expression and

then pasted it into the Windows calculator but I forgot to press

the “=” sign. Silly mistake; let me fix the acceptance test:

 [TestMethod]
 public void ComplexExpressionWithFloatingPointNumbers()
 {
 CheckEvaluation("1.2*6/(2.74-9.1*(-5.27)/(3+17.4*(9.15-
1.225)))", 2.33, 0.01);
 }

All the tests pass. I keep getting surprised by how easy it is to

change the code. I guess YAGNI was not as bad as I feared (in

this case at least).

One refactoring remains to be done; I should use a switch

statement instead of multiple ifs in the Parser.Parse method:

 public IEnumerable<Element> Parse(string s)
 {
 const int BOOST = 10;

 var precedenceBoost = 0;

Marcel Popescu

96

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar) || currentChar == '.')
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));
 operand = "";

 switch (currentChar)
 {
 case '(':
 precedenceBoost += BOOST;
 break;

 case ')':
 precedenceBoost -= BOOST;
 break;

 default:
 yield return operatorFactory.Create(currentChar,
precedenceBoost);
 break;
 }
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));
 }

All the tests still pass.

6.1. Malformed expressions

There is a problem that lingers in the code: what happens with

malformed expressions? Specifically, what happens with

expressions with unbalanced parentheses and/or double

TDD by example – Evaluating an expression

97

decimal points inside a number? I think I should raise

exceptions in these cases.

Since this is a parsing issue, I‟ll start by adding a test to the

ParserTests class:

 [TestMethod]
 [ExpectedException(typeof (Exception))]
 public void TooManyOpenParentheses()
 {
 Parse("(1");
 }

This test fails because the code did not throw an exception. Let

me fix that:

 public IEnumerable<Element> Parse(string s)
 {
 const int BOOST = 10;

 var precedenceBoost = 0;

 var operand = "";
 foreach (var currentChar in s)
 {
 if (char.IsDigit(currentChar) || currentChar == '.')
 operand += currentChar;
 else
 {
 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));
 operand = "";

 switch (currentChar)
 {
 case '(':
 precedenceBoost += BOOST;
 break;

 case ')':
 precedenceBoost -= BOOST;
 break;

 default:

Marcel Popescu

98

 yield return operatorFactory.Create(currentChar,
precedenceBoost);
 break;
 }
 }
 }

 if (operand != "")
 yield return
operandFactory.Create(Convert.ToDouble(operand));

 if (precedenceBoost > 0)
 throw new Exception("Too many open parentheses");
 }

The test passes; I‟ll add the one for the opposite case:

 [TestMethod]
 [ExpectedException(typeof(Exception))]
 public void TooManyClosedParentheses()
 {
 Parse("1)");
 }

and the matching change in the Parse method:

 if (precedenceBoost < 0)
 throw new Exception("Too many closed parentheses");

Both tests pass now. Let me add a test for the double decimal

point:

 [TestMethod]
 [ExpectedException(typeof(Exception))]
 public void DoubleDecimalPoint()
 {
 Parse("1.5.7");
 }

This test fails… in an unexpected way:

“System.FormatException: Input string was not in a correct

format.”

TDD by example – Evaluating an expression

99

Makes sense; the decimal points are added to the current

operand, no matter how many of them are encountered, and

this blows up when trying to convert it to a double. Decision

time: do I absolutely want to detect the problem myself, when

the second decimal point is encountered, or is this good

enough? Given that my point here is to show the TDD process

and not to create the world‟s best expression evaluator, I‟ll go

with “good enough”. The test still needs to be changed:

 [TestMethod]
 [ExpectedException(typeof (FormatException))]
 public void DoubleDecimalPoint()
 {
 Parse("1.5.7");
 }

All the tests pass and I verified that I‟m safe against

malformed expressions.

6.2. Spaces

Unfortunately, I forgot something else… spaces in the string

being parsed will blow up. To show that, I‟m adding a test to

the ParserTests class:

 [TestMethod]
 public void ExpressionWithSpaces()
 {
 var result = Parse("1 + 2");

 Assert.AreEqual(3, result.Count);
 }

However, this is very easy to fix; I just need to change the

foreach:

 foreach (var currentChar in s.Where(c =>
!char.IsWhiteSpace(c)))

All the tests pass again.

Marcel Popescu

100

Chapter 7. Symbols

The evaluator is pretty complete right now. I want to add

something I haven‟t seen done in other similar examples:

symbolic operands, as in “a + 3”. Of course, I‟m going to need

to pass a way to evaluate those symbols; I‟ll do that with a

dictionary. Here‟s the new acceptance test:

 [TestMethod]
 public void ExpressionWithSymbols()
 {
 CheckEvaluation("(x + 3) / (y + 5)", 2, 0.01, new
Dictionary<string, double> { { "x", 7 }, { "y", 0 } });
 }

The CheckEvaluation method changes accordingly:

 private static void CheckEvaluation(string s, double expected,
double precision = 0.0001, IDictionary<string, double> symbols =
null)
 {
 var parser = new Parser(new OperatorFactory(), new
OperandFactory(), symbols);
 var sut = new Evaluator(parser);

 var result = sut.Eval(s);

 Assert.AreEqual(expected, result, precision);
 }

As you can see, I‟ve decided that the Parser class is the one

that needs to know about the symbols; it will change them into

operands so that the rest of the code will remain unchanged.

A new test in the ParserTests is required:

 [TestMethod]
 public void SymbolicExpression()
 {
 var sut = new Parser(new OperatorFactory(), new
OperandFactory(), new Dictionary<string, double> { { "x", 10 } });

 var result = sut.Parse("x").ToList();

TDD by example – Evaluating an expression

101

 Assert.AreEqual(1, result.Count);
 Assert.AreEqual(10, ((Operand) result[0]).Value);
 }

I change the Parse constructor to handle the new argument:

 public Parser(OperatorFactory operatorFactory, IOperandFactory
operandFactory, IDictionary<string, double> symbols = null)
 {
 this.operatorFactory = operatorFactory;
 this.operandFactory = operandFactory;
 }

The two new tests fail; the letters are considered (unknown)

operators. Fixing that require a few more changes to the Parse

class:

 public class Parser
 {
 public Parser(OperatorFactory operatorFactory, IOperandFactory
operandFactory, IDictionary<string, double> symbols = null)
 {
 this.operatorFactory = operatorFactory;
 this.operandFactory = operandFactory;
 this.symbols = symbols;
 }

 public IEnumerable<Element> Parse(string s)
 {
 const int BOOST = 10;

 var precedenceBoost = 0;

 var operand = "";
 foreach (var currentChar in s.Where(c =>
!char.IsWhiteSpace(c)))
 {
 if (char.IsLetterOrDigit(currentChar) || currentChar ==
'.')
 operand += currentChar;
 else
 {
 if (operand != "")

Marcel Popescu

102

 yield return
operandFactory.Create(GetOperand(operand));
 operand = "";

 switch (currentChar)
 {
 case '(':
 precedenceBoost += BOOST;
 break;

 case ')':
 precedenceBoost -= BOOST;
 break;

 default:
 yield return operatorFactory.Create(currentChar,
precedenceBoost);
 break;
 }
 }
 }

 if (operand != "")
 yield return operandFactory.Create(GetOperand(operand));

 if (precedenceBoost > 0)
 throw new Exception("Too many open parentheses");
 if (precedenceBoost < 0)
 throw new Exception("Too many closed parentheses");
 }

 //

 private readonly OperatorFactory operatorFactory;
 private readonly IOperandFactory operandFactory;
 private readonly IDictionary<string, double> symbols;

 private double GetOperand(string operand)
 {
 return char.IsLetter(operand.First())
 ? symbols[operand]
 : Convert.ToDouble(operand);
 }

As you can see, the first test changed from char.IsLetter to

char.IsLetterOrDigit; also, the conversion of the operand

TDD by example – Evaluating an expression

103

variable to a double has been extracted to a private method,

which looks up the string in the symbols dictionary if it starts

with a letter.

All the tests pass… and the expression evaluator class is

complete (which simply means that I don‟t have any other

requirements right now).

Marcel Popescu

104

Chapter 8. Conclusion

I hope the time spent on this was useful – not so much in

learning how to evaluate an expression, but rather in learning

how to develop an application by writing tests (executable

specifications) before writing production code.

Whether you liked the book or not, please leave a review. The

book will be freely available in several formats at the

http://renfieldsoftware.com site; I would very much

appreciate it if you shared it with friends or colleagues who

might find it useful. It should also be available as a Kindle

ebook on Amazon; please leave a review there if you can, it

helps.

Thank you for taking the time to read this; I hope you enjoyed

it.

http://renfieldsoftware.com/

105

106

ABOUT THE AUTHOR

Marcel Popescu discovered computers when he was twelve years old.
(According to his daughters, dinosaurs were still alive back then.) It

was the first time he did not abandon a hobby and he’s still unable to
escape the thrill of writing code. He has worked with languages ranging
from COBOL and FORTRAN to JavaScript, but right now his favorite

language is C#.

	Chapter 1. Rationale and preparation
	1.1. Why TDD?
	1.2. Preparation

	Chapter 2. First acceptance tests
	2.1. Unit tests
	2.2. Addition
	2.3. Subtraction
	2.4. Refactoring
	2.5. Parsing
	2.6. Extracting a new class
	2.7. Operators

	Chapter 3. More operations
	3.1. Refactoring
	3.2. Division
	3.3. Refactoring
	3.4. Mocking
	3.5. More dependencies

	Chapter 4. Multiple operations
	4.1. Smells-driven refactoring
	4.2. Lists
	4.3. Operator precedence

	Chapter 5. More complex expressions
	5.1. Negative numbers
	5.2. Parentheses
	5.3. Refactoring

	Chapter 6. Floating-point numbers
	6.1. Malformed expressions
	6.2. Spaces

	Chapter 7. Symbols
	Chapter 8. Conclusion

